Preview

Российские нанотехнологии

Расширенный поиск

ПУТИ И МЕТОДЫ УПРАВЛЕНИЯ БИОМОЛЕКУЛЯРНЫМИ СТРУКТУРАМИ С ПОМОЩЬЮ МАГНИТНЫХ НАНОЧАСТИЦ, АКТИВИРУЕМЫХ ПЕРЕМЕННЫМ МАГНИТНЫМ ПОЛЕМ

Полный текст:

Аннотация

Функционализованные магнитные наночастицы (МНЧ), управляемые внешним магнитным полем, являются перспективной платформой нанобиомедицины нового поколения. Благодаря своей способности локально изменять состояние биохимической системы через два различных физических канала — термический и наномагнитомеханический — они уже начали применяться в экспериментальном порядке для адресной доставки лекарств и терапии онкологических заболеваний. В работе рассмотрены особенности, преимущества и недостатки каждого из этих каналов, а также основные параметры магнитного поля, определяющие механизмы воздействия МНЧ на различные биомолекулярные мишени. Приведен короткий обзор и сравнительный анализ основных экспериментальных работ, выполненных в рамках концепций магнитной гипертермии и наномагнитомеханической актуации.

Об авторах

Ю. И. Головин
Московский государственный университет имени М.В. Ломоносова; Тамбовский государственный университет имени Г.Р. Державина, НИИ «Нанотехнологии и наноматериалы»
Россия

химический факультет, 119991, Москва, Ленинские горы, 1–11б;

392000, Тамбов, ул. Интернациональная, 33



А. О. Жигачев
Тамбовский государственный университет имени Г.Р. Державина, НИИ «Нанотехнологии и наноматериалы»
Россия
392000, Тамбов, ул. Интернациональная, 33


М. В. Ефремова
Московский государственный университет имени М.В. Ломоносова; Национальный исследовательский технологический университет «МИСИС»
Россия

химический факультет, 119991, Москва, Ленинские горы, 1–11б;

119991, Москва, Ленинский проспект, 4



А. Г. Мажуга
Московский государственный университет имени М.В. Ломоносова; Национальный исследовательский технологический университет «МИСИС»; Российский химико-технологический университет имени Д.И. Менделеева
Россия

химический факультет, 119991, Москва, Ленинские горы, 1–11б;

119991, Москва, Ленинский проспект, 4;

125047, Москва, Миусская пл., 9



А. В. Кабанов
Московский государственный университет имени М.В. Ломоносова; Университет Северной Каролины в Чапел Хилл
Соединённые Штаты Америки

химический факультет, 119991, Москва, Ленинские горы, 1–11б;

27599, Чапел Хилл



Н. Л. Клячко
Московский государственный университет имени М.В. Ломоносова; Университет Северной Каролины в Чапел Хилл
Соединённые Штаты Америки

химический факультет, 119991, Москва, Ленинские горы, 1–11б;

27599, Чапел Хилл



Список литературы

1. Ito A., Shinkai M., Honda H., Kobayashi T. Medical application of functionalized magnetic nanoparticles // J. Biosci. Bioeng. 2005. V. 100. № 1. P. 1–11.

2. Lu A.H., Salabas E.E., Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application // Angew. Chem. Int. Edit. 2007. V. 46. № 8. P. 1222–1244.

3. Reddy L.H., Arias J.L., Nicolas J., Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications // Chem. Rev. 2012. V. 112. № 11. P. 5818–5878.

4. Pankhurst Q.A., Connolly J., Jones S.K., Dobson J.J. Applications of magnetic nanoparticles in biomedicine // J. Phys. D Appl. Phys. 2003. V. 36. № 13. R167.

5. Erb R.M., Martin J.J., Soheilian R., Pan C., Barber J.R. Actuating Soft Matter with Magnetic Torque // Adv. Funct. Mater. 2016. V. 26. № 22. P. 3859–3880.

6. Hauser A.K., Wydra R.J., Stocke N.A., Anderson K.W., Hilt J.Z. Magnetic nanoparticles and nanocomposites for remote controlled therapies // J. Control. Release. 2015. V. 219. P. 76–94.

7. Sneider A., VanDyke D., Paliwal S., Rai P. Remotely triggered nano-theranostics for cancer applications // Nanotheranostics. 2017. V. 1. № 1. P. 1–22.

8. Muthu M.S., Leong D.T., Mei L., Feng S.S. Nanotheranostics- application and further development of nanomedicine strategies for advanced theranostics // Theranostics. 2014. V. 4. № 6. P. 660.

9. Golovin Y.I., Gribanovsky S.L., Golovin D.Y., Klyachko N.L., Majouga A.G., Master А.M., Sokolsky M., Kabanov A.V. Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields // J. Control. Release. 2015. V. 219. P. 43–60.

10. Golovin Y.I., Klyachko N.L., Majouga A.G., Sokolsky M., Kabanov A.V. Theranostic multimodal potential of magnetic nanoparticles actuated by non-heating low frequency magnetic field in the new-generation nanomedicine // J. Nanopart. Res. 2017. V. 19. № 2. P. 63.

11. Gilchrist R.K., Medal R., Shorey W.D., Hanselman R.C., Parrott J.C., Taylor C.B. Selective inductive heating of lymph nodes // Ann. Surg. 1957. V. 146. № 4. P. 596.

12. Ulbrich K., Hola K., Subr V., Bakandritsos A., Tucek J., Zboril R. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies // Chem. Rev. 2016. V. 116. № 9. P. 5338–5431.

13. Dutz S, Hergt R. Magnetic particle hyperthermia — a promising tumour therapy? // Nanotechnology. 2014. V. 25. P. 452001.

14. Rabin Y. Is intracellular hyperthermia superior to extracellular hyperthermia in the thermal sense? // Int. J. Hyperther. 2002. V. 18. № 3. P. 194–202.

15. Keblinski P, Cahill D.G., Bodapati A., Sullivan C.R., Taton T.A. Limits of localized heating by electromagnetically excited nanoparticles // J. Appl. Phys. 2006. V. 100. № 5. P. 054305.

16. Hergt R., Andrä W. Magnetic hyperthermia and thermoablation. In: Andrä W, Nowak H. (eds) Magnetism in medicine: a handbook, Second ed. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007. P. 550–570.

17. СанПиН 2.2.4.3359-16 «Санитарно-эпидемиологические требования к физическим факторам на рабочих местах». Постановление Главного государственного санитарного врача РФ от 21.06.2016 № 81.

18. Extremely low frequency fields. Environmental Health Criteria 238. World Health Organization, 2007. 543 p. http://www.who. int/peh-emf/publications/Complet_DEC_2007.pdf

19. Maier-Hauff K., Ulrich F., Nestler D., Niehoff H., Wust P., Thiesen B., Orawa H., Budach V., Jordan A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme // J. Neurooncol. 2011. V. 103. № 2. P. 317–324.

20. Wust P., Hildebrandt B., Sreenivasa G., Rau B., Gellermann J., Riess H., Felix R., Schlag, P.M. Hyperthermia in combined treatment of cancer // Lancet Oncol. 2002. V. 3. № 8. P. 487–497.

21. Datta N.R., Ordóñez S.G., Gaipl U.S., Paulides M.M., Crezee H., Gellermann J., Marder D., Puric E., Bodis S. Local hyperthermia combined with radiotherapy and-/or chemotherapy: Recent advances and promises for the future // Cancer Treat. Rev. 2015. V. 41. № 9. P. 742–753.

22. Creixell M., Bohorquez A.C., Torres-Lugo M., Rinaldi C. EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise // ACS Nano. 2011. V. 5. № 9. P. 7124–7129.

23. Asin L., Ibarra M.R., Tres A., Goya G.F. Controlled cell death by magnetic hyperthermia: effects of exposure time, field amplitude, and nanoparticle concentration // Pharm. Res. 2012. V. 29. № 5. P. 1319–1327.

24. Dobson J. Magnetic nanoparticles for drug delivery // Drug Develop. Res. 2006. V. 67. № 1. P. 55–60.

25. Dobson J. Remote control of cellular behaviour with magnetic nanoparticles // Nat. Nanotechnol. 2008. V. 3. № 3. P. 139–143.

26. Chen J., Fabry B., Schiffrin E. L., Wang N. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells // Am. J. Physiol., Cell Ph. 2001. V. 280. № 6. P. 1475–1484.

27. Domenech M., Marrero-Berrios I., Torres-Lugo M., Rinaldi C. Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields // ACS Nano. 2013. V. 7. № 6. P. 5091–5101.

28. Kanczler J.M., Sur H.S., Magnay J., Green D., Oreffo R.O., Dobson J.P., El Haj A.J. Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology // Tissue Eng. Pt. A. 2010. V. 16. P. 3241–3250.

29. Hu B., El Haj A.J., Dobson J. Receptor-targeted, magneto-mechanical stimulation of osteogenic differentiation of human bone marrow-derived mesenchymal stem cells // Int. J. Mol. Sci. 2013. V. 14. № 9. P. 19276–19293.

30. Hu B., Dobson J., El Haj A.J. Control of Smooth Muscle α-actin (SMA) up-regulation in HBMSCs using remote magnetic particle mechano-activation // Nanomed. Nanotechnol. 2014. V. 10. P. 45–55.

31. Kim D.H., Rozhkova E.A., Ulasov I.V., Bader S.D., Rajh T., Lesniak M.S., Novosad V. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction // Nat. Mater. 2010. V. 9. № 2. P. 165.

32. Master A.M., Williams P.N., Pothayee N., Pothayee N., Zhang R., Vishwasrao H.M., Golovin Y.I., Riffle J.S., Sokolsky M., Kabanov A.V. Remote actuation of magnetic nanoparticles for cancer cell selective treatment through cytoskeletal disruption // Sci. Rep.-UK. 2016. V. 6. P. 33560.

33. Nappini S., Bonini M., Bombelli F.B., Pineider F., Sangregorio C., Baglioni P., Nordèn B. Controlled drug release under a low frequency magnetic field: effect of the citrate coating on magnetoliposomes stability // Soft Matter. 2011. V. 7. P. 1025–1037.

34. Klyachko N.L., SokolskyPapkov M., Pothayee N., Efremova M.V., Gulin D.A., Pothayee N., Kuznetsov A.A., Majouga A.G., Riffle J.S., Golovin Y.I., Kabanov, A.V. Changing the Enzyme Reaction Rate in Magnetic Nanosuspensions by a Non‐Heating Magnetic Field // Angew. Chem. Int. Edit. 2012. V. 51. № 48. P. 12016–12019.

35. Majouga A., Sokolsky-Papkov M., Kuznetsov A., Lebedev D., Efremova M., Beloglazkina E., Rudakovskaya P.G., Veselov M., Zyk N., Golovin Y.I., Klyachko N.L., Kabanov A.V. Enzymefunctionalized gold-coated magnetite nanoparticles as novel hybrid nanomaterials: Synthesis, purification and control of enzyme function by low-frequency magnetic field // Colloid Surface B. 2015. V. 125 P. 104–109.

36. Serantes D., Chantrell R., Gavilán H., Morales M.D.P., Chubykalo-Fesenko O., Baldomir D., Satoh A. Anisotropic magnetic nanoparticles for biomedicine: bridging frequency separated AC-field controlled domains of actuation // arXiv. 2017. P. 1704.06959.

37. Castillo M., Ebensperger R., Wirtz D., Walczak M., Hurtado D.E., Celedon A. Local mechanical response of cells to the controlled rotation of magnetic nanorods // J. Biomed. Mat. Res. B. 2014. V. 102. № 8. P. 1779–1785.

38. Martínez-Banderas A.I., Aires A., Teran F.J., Perez J.E., Cadenas J.F., Alsharif N., Ravasi T., Cortajarena A.L., Kosel J. Functionalized magnetic nanowires for chemical and magneto-mechanical induction of cancer cell death // Sci. Rep. — UK. 2016. V. 6. P. 35786.

39. Hu S.H., Gao X. Nanocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy // J. Am. Chem. Soc. 2010. V. 132. № 21. P. 7234–7237.

40. Yu H., Chen M., Rice P.M., Wang S.X., White R.L., Sun S. Dumbbell-like bifunctional Au−Fe3 O4 nanoparticles // Nano Lett. 2005. V. 5. № 2. P. 379–382.

41. Mayzel M., Ahlner A., Lundström P., Orekhov V.Y. Measurement of protein backbone 13CO and 15N relaxation dispersion at high resolution // J. Biomol. NMR. 2017. V. 69. № 1. P. 1–12.

42. Hartmann A., Krainer G., Keller S., Schlierf M. Quantification of millisecond protein-folding dynamics in membranemimetic environments by single-molecule förster resonance energy transfer spectroscopy // Anal. Chem. 2015. V. 87. № 22. P. 11224–11232.

43. Salmon L., Bouvignies G., Markwick P., Blackledge M. Nuclear magnetic resonance provides a quantitative description of protein conformational flexibility on physiologically important time scales // Biochemistry US. 2011. V. 50. № 14. P. 2735–2747.

44. Anandakrishnan R., Drozdetski A., Walker R.C., Onufriev A.V. Speed of conformational change: comparing explicit and implicit solvent molecular dynamics simulations // Biophys. J. 2015. V. 108. № 5. P. 1153–1164.

45. Efremova M.V., Veselov M.M., Barulin A.V., Gribanovsky S.L., Le-Deygen, I.M., Uporov I.V., Kudryashova E.V., SokolskyPapkov M., Majouga A.G., Golovin Y.I., Kabanov A.V., Klyachko N.L. In situ observation of chymotrypsin catalytic activity change actuated by non-heating low-frequency magnetic field // ACS Nano. 2018. V. 12. № 4. P. 3190–3199.

46. Zhang E., Kircher M.F., Koch M., Eliasson L., Goldberg S.N., Renström E. Dynamic magnetic fields remote-control apoptosis via nanoparticle rotation // ACS Nano. 2014. V. 8. № 4. P. 3192–3201.

47. Zakharchenko A., Guz N., Laradji A.M., Katz E., Minko S. Magnetic field remotely controlled selective biocatalysis // Nat. Catal. 2018. V. 1. № 1. P. 73–81.

48. Lu Z., Prouty M.D., Guo Z., Golub V.O., Kumar C.S., Lvov Y.M. Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles // Langmuir. 2005. V. 21. № 5. P. 2042–2050.

49. Hughes S., McBain S., Dobson J., El Haj A.J. Selective activation of mechanosensitive ion channels using magnetic particles // J. R. Soc. Interface. 2008. V. 5. № 25. P. 855–864.

50. Hoffman B.D., Grashoff C., Schwartz M.A. Dynamic molecular processes mediate cellular mechanotransduction // Nature. 2011. V. 475. № 7356. P. 316–323.

51. Roca-Cusachs P., Conte V., Trepat X. Quantifying forces in cell biology // Nat. Cell Biol. 2017. V. 19. № 7. P. 742–751.

52. Roux K.J., Crisp M.L., Liu Q., Kim D., Kozlov S., Stewart C.L., Burke, B. Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization // P. Natl. Acad. Sci. USA. 2009. V. 106. № 7. P. 2194–2199.

53. Ferrer J.M., Lee H., Chen J., Pelz B., Nakamura F., Kamm R.D., Lang M.J. Measuring molecular rupture forces between single actin filaments and actin-binding proteins // P. Natl Acad. Sci. USA. 2008. V. 105. № 27. P. 9221–9226.

54. The World of Nano-Biomechanics / Ed. Ikai A. Elsevier Science, 2007. 300 p.

55. Matthews B.D., Overby D.R., Mannix R., Ingber D.E. Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels // J. Cell. Sci. 2006. V. 119. № 3. P. 508–518.

56. Golovin Y.I., Klyachko N.L., Golovin D.Y., Efremova M.V., Samodurov A.A., Sokolski-Papkov M., Kabanov A.V. A new approach to the control of biochemical reactions in a magnetic nanosuspension using a low-frequency magnetic field // Tech. Phys. Lett. 2013. V. 39. № 3. P. 240–243.

57. Golovin Y.I., Klyachko N.L., Sokolsky-Papkov M., Kabanov A.V. Single-domain magnetic nanoparticles as force generators for the nanomechanical control of biochemical reactions by lowfrequency magnetic fields // Bul. Rus. Acad. Sci. Phys. 2013. V. 77. № 11. P. 1350–1359.

58. Golovin Y.I., Gribanovskii S.L., Golovin D.Y., Klyachko N.L., Kabanov A.V. Single-domain magnetic nanoparticles in an alternating magnetic field as mediators of local deformation of the surrounding macromolecules // Phys. Solid State. 2014. V. 56. № 7. P. 1342–1351.

59. Golovin Y.I., Gribanovsky S.L., Golovin D.Y., Zhigachev A.O., Klyachko N.L., Majouga A.G., Sokolsky M., Kabanov A.V. The dynamics of magnetic nanoparticles exposed to non-heating alternating magnetic field in biochemical applications: theoretical study // J. Nanopart. Res. 2017. V. 19. P. 59.

60. Sakellari D., Brintakis K., Kostopoulou A., Myrovali E., Simeonidis K., Lappas A., Angelakeris M. Ferrimagnetic nanocrystal assemblies as versatile magnetic particle hyperthermia mediators // Mater. Sci. Eng. C. Mater. Biol. Appl. 2016. V. 58. P. 187–193.

61. Makridis A., Tziomaki M., Topouridou K., Yavropoulou M.P., Yovos J.G., Kalogirou O., Samaras T., Angelakeris M.A novel strategy combining magnetic particle hyperthermia pulses with enhanced performance binary ferrite carriers for effective in vitro manipulation of primary human osteogenic sarcoma cells // Int. J. Hyperther. 2016. V. 32. № 7. P. 778–785.

62. Bauer L.M., Situ S.F., Griswold M.A., Samia A.C.S. High-performance iron oxide nanoparticles for magnetic particle imaging–guided hyperthermia (hMPI) // Nanoscale. 2016. V. 8. № 24. P. 12162–12169.

63. Grüll H., Langereis S. Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound // J. Control. Release. 2012. V. 161. № 2. P. 317–327.

64. Ponce A.M., Vujaskovic Z., Yuan F., Needham D., Dewhirst M.W. Hyperthermia mediated liposomal drug delivery // Int. J. Hyperther. 2006. V. 22. № 3. P. 205–213.

65. Contreras M.F., Sougrat R., Zaher A., Ravasi T., Kosel J. Nonchemotoxic induction of cancer cell death using magnetic nanowires // Int. J. Nanomed. 2015. V. 10. P. 2141–2153.

66. Chowdhury F., Na S., Li D., Poh Y.C., Tanaka T.S., Wang F., Wang N. Cell material property dictates stress-induced spreading and differentiation in embryonic stem cells //Nat. Mater. 2010. V. 9. № 1. P. 82–88.

67. Tay A., Kunze A., Murray C., Di Carlo D. Induction of calcium influx in cortical neural networks by nanomagnetic forces // ACS Nano. 2016. V. 10. № 2. P. 2331–2341.

68. Lee J.H., Kim E.S., Cho M.H., Son M., Yeon S.I., Shin J.S., Cheon J. Artificial control of cell signaling and growth by magnetic nanoparticles // Angew. Chem. Int. Edit. 2010. V. 49. № 33. P. 5698–5702.

69. Cheng Y., Muroski M.E., Petit D.C., Mansell R., Vemulkar T., Morshed R.A., Han Y., Balyasnikova I.V., Horbinski C.M., Huang X., Zhang L., Cowburn R.P., Lesniak M.S. Rotating magnetic field induced oscillation of magnetic particles for in vivo mechanical destruction of malignant glioma // J. Control. Release. 2016. V. 223. P. 75–84.

70. Shen Y., Wu C., Uyeda T.Q., Plaza G.R., Liu B., Han Y., Lesniak M.C., Cheng Y. Elongated nanoparticle aggregates in cancer cells for mechanical destruction with low frequency rotating magnetic field // Theranostics. 2017. V. 7. № 6. P. 1735–1748.

71. Liu M., Pan L., Piao H., Sun H., Huang X., Peng C., Liu Y. Magnetically actuated wormlike nanomotors for controlled cargo release // ACS Appl. Mater. Inter. 2015. V. 7. № 47. P. 26017–26021.

72. Vegerhof A., Barnoy E.A., Motiei M., Malka D., Danan Y., Zalevsky Z., Popovtzer R. Targeted magnetic nanoparticles for mechanical lysis of tumor cells by low-amplitude alternating magnetic field // Materials. 2016. V. 9. № 11. P. 943.

73. Cheng D., Li X., Zhang G., Shi H. Morphological effect of oscillating magnetic nanoparticles in killing tumor cells // Nanoscale Res. Lett. 2014. V. 9. № 1. P. 195.

74. Mizuki T., Watanabe N., Nagaoka Y., Fukushima T., Morimoto H., Usami R., Maekawa T. Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field // Biochem. Bioph. Res. Co. 2010. V. 393. № 4. P. 779–782.

75. Guardia P., Corato R.D., Lartigue L., Wilhelm C., Espinosa A., Hernandez M.G., Gazeau F., Manna L., Pellegrino T. Water soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment // ACS Nano. 2012. V. 6. № 4. P. 3080–3091.

76. Basel M.T., Balivada S., Wang H., Shrestha T.B., Seo G.M., Pyle M., Abayaweera G., Dani R., Koper O.B., Tamura M., Chikan V., Bossmann, S.H., Troyer D.L. Cell-delivered magnetic NPs caused hyperthermia-mediated increased survival in a murine pancreatic cancer model // Int. J. Nanomed. 2012. V. 7. P. 297–306.

77. Balivada S., Rachakatla R.S., Wang H., Samarakoon T.N., Dani R.K., Pyle, M., Kroh F.O., Walker B., Leaym X., Koper O.B., Tamura M., Chikan V., Bossmann S.H., Troyer D.L. A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study // BMC Cancer. 2010. V. 10. P. 119.

78. Ito A., Tanaka K., Honda H., Abe S. Yamaguchi H., Kobayashi T. Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles // J. Biosci. Bioeng. 2003. V. 96. № 4. P. 364–369.


Просмотров: 77


ISSN 1992-7223 (Print)