Preview

Российские нанотехнологии

Расширенный поиск

НАНОКАПИЛЛЯРЫ — УНИВЕРСАЛЬНЫЙ ИНСТРУМЕНТ ДЛЯ СОВРЕМЕННЫХ БИОМЕДИЦИНСКИХ ПРИЛОЖЕНИЙ

Полный текст:

Аннотация

В статье рассмотрены современные тенденции использования нанокапилляров и возможности, которые они открывают, при проведении исследований в области биологии и медицины. Нанокапилляры могут быть использованы для получения топографии живых клеток с высоким разрешением при физиологических условиях, осуществлять контролируемую доставку веществ различной природы вблизи или внутрь микро- и нанообъектов, а также для построения различных типов биосенсоров.

Об авторах

А. Р. Усманов
Московский государственный университет им. М.В. Ломоносова, химический факультет
Россия


А. С. Ерофеев
Московский государственный университет им. М.В. Ломоносова, химический факультет
Россия


П. В. Горелкин
ООО «Медицинские нанотехнологии»
Россия


Ю. Е. Корчев
Департамент медицины, Имперский колледж Лондона, W12 0NN, Лондон, Дью Кейн Роуд
Великобритания


А. Г. Мажуга
Московский государственный университет им. М.В. Ломоносова, химический факультет; Национальный исследовательский технологический университет «МИСИС»
Россия


Список литературы

1. Takami T., Park B.H., Kawai T. Nanopipette exploring nanoworld // Nano convergence. 2014. V. 1:17.

2. The Nobel Prize in Physiology or Medicine 1991. Nobel Media AB. Retrieved, 2014.

3. Gates B.D. et. al. New approaches to nanofabrication: molding, printing, and other techniques // Chem Rev. 2005. V. 105. P. 1171–1196.

4. Levis J.L. et. al. A method for exceptionally low noise single channel recordings // Pflügers Arch. Eur. J. Physiol. 1992. V. 420. P. 618–620.

5. Zuazaga C., Steinacker A. Patch-clamp recording of ion channels: interfering effects of patch pipette glass // News Physiol. Sci. 1990. V. 65. P. 1666–1677.

6. Karhanek M. et. al. Single DNA molecule detection using nanopipettes and nanoparticles // Nano Lett. 2005. V. 5. P. 403–407.

7. Kim B.M. et. al. The fabrication of integrated carbon pipes with submicron diameters // Nanotechnology. 2005. V. 16. P. 1317–1320.

8. Freedman J.R. et. al. Magnetically assembled carbon nanotube tipped pipettes // Appl. Phys. Lett. 2007. V. 90. P. 103–108.

9. Hansma P.K. et al. The scanning ion-conductance microscope // Science. 1989. V. 243. P. 641–643.

10. Chen C.C. et al. Scanning ion conductance microscopy // Annu. Rev. Anal. Chem. (Palo Alto. Calif). 2012. V. 5. P. 207–208.

11. Gorelik J. et al. Dynamic assembly of surface structures in living cells // Proc. Natl. Acad. Sci. USA. 2003. V. 100. P. 5819–5822.

12. Novak P. et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy // Nature Methods. 2009. V. 60. P. 279–281.

13. Ares P. et. al. High resolution atomic force microscopy of double-stranded RNA // Nanoscale. 2016. V. 8. P. 11818–11826.

14. Mikihiro Shibata et. al. High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin // Nature Nanotechnology. 2010. V. 5. P. 208–212.

15. Shevchuk A et. al. Imaging proteins in membranes of living cells by high-resolution scanning ion conductance microscopy // Angew Chem. Int. Ed. Engl. 2006. V. 45. P. 2212–2226.

16. Zhang Y. et. al. High-resolution imaging and nano manipulation of biological structures on surface // Microsc. Res. Tech. 2011. V. 74. P. 614–626.

17. Daniel Sánchez et al. Noncontact Measurement of the Local Mechanical Properties of Living Cells Using Pressure // Applied via a Pipette Biophys J. 2008. V. 95. P. 3017–3027.

18. Ushiki T. et al. Scanning ion conductance microscopy for imaging biological samples in liquid: a comparative study with atomic force microscopy and scanning electron microscopy // Micron. 2012. V. 43. № 12. P. 1390–1398.

19. Novak P. et al. Imaging Single Nanoparticle Interactions with Human Lung Cells Using Fast Ion Conductance Microscopy // Nano Lett. 2014. V. 14. № 3. P. 1202–1207.

20. Novak P. et al. Nanoscale-targeted patch-clamp recordings of functional presynaptic ion channels // Neuron. 2013. V. 79 № 6. P. 1067–1077.

21. Klemic K. G. et al. Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells // Biosens. Bioelectron. 2002 V. 17. P. 597–604.

22. Zhao Y. Patch clamp technique: review of the current state of the art and potential contributions from nanoengineering // Proc. IMechE. V. 222. Part N: J. Nanoengineering and Nanosystems

23. Shevchuk A. et al. Angular Approach Scanning Ion Conductance Microscopy // Biophys. J. 2016. V. 110. № 10. P. 2252–2265.

24. Richard W. Clarke et al. Low Stress Ion Conductance Microscopy of Sub-Cellular Stiffness // Soft Matter. 2016. V. 12. P. 7953–7958.

25. Guillaume-Gentil O. et. al. Force-controlled manipulation of single cells: from AFM to FluidFM // Trends Biotechnol. 2014. V. 32. P. 381–388.

26. Potthoff E. Rapid and Serial Quantification of Adhesion Forces of Yeast and Mammalian Cells // PLoS ONE. 2012. V. 7. № 12.

27. Eva Potthoff et al. Toward a Rational Design of Surface Textures Promoting Endothelialization // Nano Lett. 2014. V. 14. P. 1069–107.

28. Francois Laforge. Scanning electrochemical microscopy (SECM). Department of Chemistry and Biochemistry Queens College — City University of New York Flushing, NY 11367, USA. http://knowledge.electrochem.org/encycl/artm04-microscopy.htm

29. Comstock D. J. et al. Integrated ultramicroelectrode-nanopipet probe for concurrent scanning electrochemical microscopy and scanning ion conductance microscopy // Anal. Chem. 2010. V. 82. № 4. P. 1270–1276.

30. Wei C. et al. Current rectification at quartz nanopipet electrodes // Anal Chem. 1997. V. 69. P. 4627–4633.

31. Umehara S. et al. Current rectification with poly-l-lysine-coated quartz nanopipettes. // Nano Lett. 2006. V. 6. P. 2486–2492.

32. Bard A.J., Faulkner L.R. (eds.). Electrochemical methods: fundamentals and applications // New York: Wiley, 1980.

33. Fu Y. et al. Nanopore DNA sensors based on dendrimer-modified nanopipettes // Chem. Commun. (Camb). 2009. V. 32. P. 4877–4879.

34. Sexton L.T. et al. Resistive-pulse studies of proteins and protein/ antibody complexes using a conical nanotube sensor // J. Am. Chem. Soc. 2007. V. 129. P. 13144–13152.

35. Actis P. et al. Functionalized nanopipettes: toward labelfree, single cell biosensors // Bioanal. Rev. 2010. V. 1. № 2–4. P.177–185.

36. Sa N. et al. Rectification of Ion Current in Nanopipettes by External Substrates // ACS Nano. 2013. V. 7. № 12. P. 11272–11282.

37. Umehara S. et al. Label-free biosensing with functionalized nanopipette probes. // Proc. Natl. Acad. Sci. U. S. A. 2009. V. 106. № 12. P. 4611–4616.

38. Vitol E.A. et al. In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes. // ACS Nano. 2009. V. 3. № 11. P. 3529–3536.

39. Vilozny B. et al. Reversible cation response with a protein-modified nanopipette // Anal. Chem. 2011. V. 83. № 16. P. 6121–6126.

40. Vilozny B. et al. Dynamic control of nanoprecipitation in a nanopipette // ACS Nano. 2011. V. 5. № 4. P. 3191–3197.

41. Actis P. et al. Electrochemical nanoprobes for single-cell analysis // ACS Nano. 2014. V. 8. № 1. P. 875–884.

42. Zhang Y. et al. Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis // ACS Nano. 2016. V. 10. № 3. P. 3214–3221.

43. Takahashi Y. et al. Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces // Angew. Chem. Int. Ed. Engl. 2011. V. 50. № 41. P. 9638–9642.

44. Iwata F. et al. Nanometre-scale deposition of colloidal Au particles using electrophoresis in a nanopipette probe // Nanotechnology. 2007. V. 18. P. 105301

45. Suryavanshi A.P., Yu M.F. Electrochemical fountain pen nanofabrication of vertically grown platinum nanowires // Nanotechnology. 2007. V. 18. № 10. P. 105305.

46. Laslau C. et al. The application of nanopipettes to conducting polymer fabrication, imaging and electrochemical characterization // Prog. Polym. Sci. 2012. V. 37. № 9. P. 1177–1191.

47. Nogava et al. Development of Novel Nanopipette with a Lipid Nanotube as Nanochannel Dept. of Micro-Nano Syst. Eng., Nagoya Univ., Nagoya, IEEE Xplore, Conference: Nanotechnology, 2007.

48. Rodolfa K.T. et al. Two-component graded deposition of biomolecules with a double-barreled nanopipette // Angew Chem. Int. Ed. Engl. 2005. V. 44. P. 6854–6859.

49. Nikolaev V.O. et al. β2-Adrenergic Receptor Redistribution in Heart Failure Changes cAMP Compartmentation // Science. 2010. V. 327. P. 1653–1657.

50. Bruckbauer A. et al. An addressable antibody nanoarray produced on a nanostructured surface. // J. Am. Chem. Soc. 2004. V. 126. № 21. P. 6508–6509.

51. Babakinejad B. et al. Local Delivery of Molecules from a Nanopipette for Quantitative Receptor Mapping on Live Cells // Anal. Chem. 2013. V. 85. P. 9333−9342.

52. Seger R.A. et al. Pourmand Voltage controlled nano-injection system for single-cell surgery. // Nanoscale. 2012. V. 4. № 19. P. 5843–5846.

53. Deng X.L. et al. Ion Current Oscillation in Glass Nanopipettes // J. Phys. Chem. C. 2012. V. 116. № 28. P. 14857–14862.

54. Takami T. et al. Direct observation of potassium ions in HeLa cell with ion-selective nano-pipette probe // J. Appl. Phys. 2012. V. 111 № 4. P. 044702.

55. Singhal R. et al. Multifunctional carbon-nanotube cellular endoscopes. // Nat. Nanotechnol. 2011. V. 6. № 1. P. 57–64.

56. Takami T. et al. Development of Beetle-Type Robot with SubMicropipette Probe // Jpn. J. Appl. Phys. 2012. V. 51. № 8S3. P. 08KB12.

57. Yuill E.M. et al. Electrospray ionization from nanopipette emitters with tip diameters of less than 100 nm. // Anal. Chem. 2013. V. 85. № 18. P. 8498–8502.


Просмотров: 60


ISSN 1992-7223 (Print)