Журналов:     Статей:        

Российские нанотехнологии. 2019; 14: 63-68

Сравнительная оценка бионакопления алюминия и морфологических изменений в легких и головном мозге при однократной ингаляционной экспозиции нанодисперсным оксидом алюминия

Зайцева Н. В., Землянова М. А., Степанков М. С., Игнатова А. М.

https://doi.org/10.21517/1992-7223-2019-1-2-63-68

Аннотация

При однократной четырехчасовой ингаляционной экспозиции аэрозолями водных суспензий нанодисперсного оксида алюминия с размером частиц 30—40 нм в фактической концентрации 0.16 мг/м3 и микродисперсного аналога с размером частиц 3000—6000 нм в фактической концентрации 0.15 мг/м3 установлено накопление алюминия в головном мозге и легких мышей линии ICR (CD-1). Концентрация алюминия в легких выше в 14.27 раза при действии наночастиц, чем при действии микрочастиц. Концентрация алюминия в мозге выше при действии микрочастиц в 1.34 раза, чем при действии наночастиц. Патоморфологические изменения тканей головного мозга животных опытной группы характеризуются субарахноидальным кровоизлиянием, не отмеченным у животных группы сравнения. Патоморфологические изменения тканей легких животных опытной группы проявляются в остром полнокровии и мелких геморрагических инфарктах, животных группы сравнения — в гиперплазии лимфоидной ткани и эозинофилии инфильтрата. Выявленные изменения в тканях головного мозга и легких свидетельствуют о большей токсичности наночастиц оксида алюминия по сравнению с микродисперсным аналогом.

Список литературы

1. The global market for aluminum oxide nanoparticles // Nanotech magazine. 2013. URL: https://www.nanotechmag.com/the-global-market-for-aluminium-oxide-nanoparticles/#prettyPhoto (дата обращения: 22.02.2019).

2. Robertson T., Sanchez W., Roberts M. Are Commercially Available Nanoparticles Safe When Applied to the Skin? // J. Biomed. Nanotechnology. 2010. V. 6. № 5. P 452.

3. Liu X., Luo L, Ding Y. et al. Amperometric biosensors based on alumina nanoparticles-chitosan-horseradish peroxidase nanobiocomposites for the determination of phenolic compounds // Analyst. 2011. V. 136. № 4. P. 696.

4. Jodin L, Dupuis A.C., Rouviere E. et al. Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition // J. Phys. Chem B. 2006. V. 110. № 4. P 7328.

5. Krewski D., Yokel R., Nieboer E. et al. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide // J. Toxicol. Environ. Health. B. Crit. Rev. 2007. V. 10. P 269.

6. Зайцева Н.В., Землянова М.А., Степанков М.С., Игнатова А.М. Оценка токсичности и потенциальной опасности наночастиц оксида алюминия для здоровья человека // Экология человека. 2018. № 5. С. 9.

7. Bahadar H., Maqbool F, Niaz K. et al. Toxicity of Nanoparticles and an Overview of Current Experimental Models // Iranian Biomedical J. 2016. V. 20. № 1. P 1.

8. Chen L., Yokel R.A., Hennig B. et al. Manufactured Aluminum Oxide Nanoparticles Decrease Expression of Tight Junction Proteins in Brain Vasculature // J. Neuroimmune Pharmacol. 2008. V. 3. № 4. P 286.

9. Arul Prakash F, Dushendra Babu G. J., Lavanya M. et al. Toxicity studies of aluminium oxide nanoparticles in cell lines // International Journal of Nanotechnology and Applications. 2011. V. 5. № 2. P. 99.

10. Balasubramanyam A., Sailaja N., Mahboob M. et al. In vivo genotoxicity assessment of aluminium oxide nanomaterials in rat peripheral blood cells using the comet assay and micronucleus test // Mutagenesis. 2009. V. 24. № 3. P 245.

11. Pauluhn J. Pulmonary toxicity and fate of agglomerated 10 and 40 nm aluminum oxihydroxides following 4-week inhalation exposure of rats: toxic effects are determined by agglomerated, not primary particle size // Toxicol Sciences. 2009. V. 109. № 1. P 152.

12. El-Hussainy el-H.M., Hussein A.M., Abdel-Aziz A. et al. Effects of aluminum oxide (Al2O3) nanoparticles on ECG, myocardial inflammatory cytokines, redox state, and connexin 43 and lipid profile in rats: possible cardioprotective effect of gallic acid // Can. J. Physiol. Pharmacol.. 2016. V. 94. № 8. P 868.

13. Di Virgilio A.L., Reigosa M., Arnal P.M. et al. Comparative study of the cytotoxic and genotoxi ceffects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells // J. Hazard. Mater. 2010. V. 177. № 1-3. P. 711.

14. Pakrashi S., Dalai S., Prathna T.C. et al. Cytotoxicity of aluminium oxide nanoparticles towards fresh water isolate at low exposure concentrations algal // Aquatic Toxicology. 2013. V. 132-133. P 34.

15. International Agency for Research on Cancer. http://monographs.iarc.fr/ENG/Classification/index.php (дата обращения: 22.02.2019).

16. Руководство по уходу и использованию лабораторных животных (Guide for the care and use of laboratory animals) // National Research Council of the national academies. Washington: The national academies press, 2011. 248 p.

17. Toxicological profile for aluminum // Agency for Toxic Substances and Disease Registry. 2008. 356 p.

18. Kim J.H., Kim J.H., Park J.A. et al. Bloodneural barrier: intercellular communication at glio-vascular interface // J. Biochem. Mol. Biol. 2006. V. 39. № 4. P. 339.

19. Chen L., Yokel R.A., Hennig B. et al. Manufactured Aluminum Oxide Nanoparticles Decrease Expression of Tight Junction Proteins in Brain Vasculature // J. Neuroimmune Pharmacol. 2008. V. 3. № 4. P. 286.

20. Park E-J., Kim H., Kim Y. et al. Repeated-dose toxicity attributed to aluminum nanoparticles following 28-day oral administration, particularly on gene expression in mouse brain // Toxicol. Environ. Chem. 2011. V. 93. № 1. P. 120.

21. Kroll M.H., Afshar-Kharghan V. Platelets in pulmonary vascular physiology and pathology // Pulmonary Circulation. 2012. V. 2. № 3. P. 291.

22. Schwarz Y.A., Kivity S., Fischbein A. et al. Eosinophilic lung reaction to aluminium and hard metal // Chest. 1994. V. 105. № 4. P 1261.

23. Pease C., Rucker T., Birk T. Review of the Evidence from Epidemiology, Toxicology and Lung Bioavailability on the Carcinogenicity of Inhaled Iron Oxide Particulates // Chem. Res. Toxicol. 2016. V. 29. № 3. P 237.

24. Mittal M., Siddiqui M.R., Tran K. et al. Reactive Oxygen Species in Innflamation and Tissue Injury // Antioxidants & Redox Signaling. 2014. V. 20. № 7. P 1126.

Title in english. 2019; 14: 63-68

Comparative assessment of aluminum bioaccumulation and morphological changes in the lungs and brain with a single inhalation exposure to nanodispersed aluminum oxide

Zaitseva N. V., Zemlyanova M. A., Stepankov M. S., Ignatova A. M.

https://doi.org/10.21517/1992-7223-2019-1-2-63-68

Abstract

Accumulation of aluminum was established in brain and lung after single 4-hour inhalation exposure by aerosols of water suspensions of nonodispersed aluminum oxide with particle size 30-40 nm in the actual concentration 0.16 mg/m3 and microdispersed analogue with particle size 3000-6000 nm in the actual concentration 0.15 mg/m3. Aluminum accumulation less pronounced in brain (in 1.34 times less) and more pronounced in lung (in 14.27 times more) of animals of experimental group regarding the comparison group. Pathological changes of brain tissues of animals of experimental group characterized by subarachnoid hemorrhage, not marked in comparison group. Pathological changes of lung tissues of animals of experimental group characterized by hemorrhage and infarction, animals of comparison group – by hyperplasia of lymphoid tissue and eosinophilia of infiltrate. Identified changes in brain and lung tissues testify about more high toxicity of aluminum oxide nanoparticles comparison with microdispersed analogue.

References

1. The global market for aluminum oxide nanoparticles // Nanotech magazine. 2013. URL: https://www.nanotechmag.com/the-global-market-for-aluminium-oxide-nanoparticles/#prettyPhoto (data obrashcheniya: 22.02.2019).

2. Robertson T., Sanchez W., Roberts M. Are Commercially Available Nanoparticles Safe When Applied to the Skin? // J. Biomed. Nanotechnology. 2010. V. 6. № 5. P 452.

3. Liu X., Luo L, Ding Y. et al. Amperometric biosensors based on alumina nanoparticles-chitosan-horseradish peroxidase nanobiocomposites for the determination of phenolic compounds // Analyst. 2011. V. 136. № 4. P. 696.

4. Jodin L, Dupuis A.C., Rouviere E. et al. Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition // J. Phys. Chem B. 2006. V. 110. № 4. P 7328.

5. Krewski D., Yokel R., Nieboer E. et al. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide // J. Toxicol. Environ. Health. B. Crit. Rev. 2007. V. 10. P 269.

6. Zaitseva N.V., Zemlyanova M.A., Stepankov M.S., Ignatova A.M. Otsenka toksichnosti i potentsial'noi opasnosti nanochastits oksida alyuminiya dlya zdorov'ya cheloveka // Ekologiya cheloveka. 2018. № 5. S. 9.

7. Bahadar H., Maqbool F, Niaz K. et al. Toxicity of Nanoparticles and an Overview of Current Experimental Models // Iranian Biomedical J. 2016. V. 20. № 1. P 1.

8. Chen L., Yokel R.A., Hennig B. et al. Manufactured Aluminum Oxide Nanoparticles Decrease Expression of Tight Junction Proteins in Brain Vasculature // J. Neuroimmune Pharmacol. 2008. V. 3. № 4. P 286.

9. Arul Prakash F, Dushendra Babu G. J., Lavanya M. et al. Toxicity studies of aluminium oxide nanoparticles in cell lines // International Journal of Nanotechnology and Applications. 2011. V. 5. № 2. P. 99.

10. Balasubramanyam A., Sailaja N., Mahboob M. et al. In vivo genotoxicity assessment of aluminium oxide nanomaterials in rat peripheral blood cells using the comet assay and micronucleus test // Mutagenesis. 2009. V. 24. № 3. P 245.

11. Pauluhn J. Pulmonary toxicity and fate of agglomerated 10 and 40 nm aluminum oxihydroxides following 4-week inhalation exposure of rats: toxic effects are determined by agglomerated, not primary particle size // Toxicol Sciences. 2009. V. 109. № 1. P 152.

12. El-Hussainy el-H.M., Hussein A.M., Abdel-Aziz A. et al. Effects of aluminum oxide (Al2O3) nanoparticles on ECG, myocardial inflammatory cytokines, redox state, and connexin 43 and lipid profile in rats: possible cardioprotective effect of gallic acid // Can. J. Physiol. Pharmacol.. 2016. V. 94. № 8. P 868.

13. Di Virgilio A.L., Reigosa M., Arnal P.M. et al. Comparative study of the cytotoxic and genotoxi ceffects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells // J. Hazard. Mater. 2010. V. 177. № 1-3. P. 711.

14. Pakrashi S., Dalai S., Prathna T.C. et al. Cytotoxicity of aluminium oxide nanoparticles towards fresh water isolate at low exposure concentrations algal // Aquatic Toxicology. 2013. V. 132-133. P 34.

15. International Agency for Research on Cancer. http://monographs.iarc.fr/ENG/Classification/index.php (data obrashcheniya: 22.02.2019).

16. Rukovodstvo po ukhodu i ispol'zovaniyu laboratornykh zhivotnykh (Guide for the care and use of laboratory animals) // National Research Council of the national academies. Washington: The national academies press, 2011. 248 p.

17. Toxicological profile for aluminum // Agency for Toxic Substances and Disease Registry. 2008. 356 p.

18. Kim J.H., Kim J.H., Park J.A. et al. Bloodneural barrier: intercellular communication at glio-vascular interface // J. Biochem. Mol. Biol. 2006. V. 39. № 4. P. 339.

19. Chen L., Yokel R.A., Hennig B. et al. Manufactured Aluminum Oxide Nanoparticles Decrease Expression of Tight Junction Proteins in Brain Vasculature // J. Neuroimmune Pharmacol. 2008. V. 3. № 4. P. 286.

20. Park E-J., Kim H., Kim Y. et al. Repeated-dose toxicity attributed to aluminum nanoparticles following 28-day oral administration, particularly on gene expression in mouse brain // Toxicol. Environ. Chem. 2011. V. 93. № 1. P. 120.

21. Kroll M.H., Afshar-Kharghan V. Platelets in pulmonary vascular physiology and pathology // Pulmonary Circulation. 2012. V. 2. № 3. P. 291.

22. Schwarz Y.A., Kivity S., Fischbein A. et al. Eosinophilic lung reaction to aluminium and hard metal // Chest. 1994. V. 105. № 4. P 1261.

23. Pease C., Rucker T., Birk T. Review of the Evidence from Epidemiology, Toxicology and Lung Bioavailability on the Carcinogenicity of Inhaled Iron Oxide Particulates // Chem. Res. Toxicol. 2016. V. 29. № 3. P 237.

24. Mittal M., Siddiqui M.R., Tran K. et al. Reactive Oxygen Species in Innflamation and Tissue Injury // Antioxidants & Redox Signaling. 2014. V. 20. № 7. P 1126.