Журналов:     Статей:        

Российские нанотехнологии. 2019; 14: 64-74

Показатели яровой пшеницы в ответ на обработку семян наночастицами металлов

Давыдова Н. В., Замана С. П., Крохмаль И. И., Резеткин А. М., Романова Е. С., Ольховская И. П., Богословская О. А., Яблоков А. Г., Глущенко Н. Н.

https://doi.org/10.21517/1992-7223-2019-11-12-64-74

Аннотация

Применение передовых нанотехнологий является одним из основных путей повышения урожайности зерновых культур для удовлетворения растущего мирового спроса на продовольствие. Изучено влияние наночастиц (НЧ) Fe и Zn на прорастание семян, рост проростков яровой мягкой пшеницы (Triticumaestivum L.) сорта Злата, анатомические изменения листа, урожайность, качество зерна и микроэлементный состав почвы после уборки урожая. Установлено, что предпосевная обработка семян композицией НЧ железа в концентрации 10 -5 %, НЧ цинка в концентрации 10 -4 % способствует повышению на 27% показателя энергии прорастания семян и массы корней по сравнению с контролем. Наибольшие высота растений (на 8.2%) и зеленая масса (на 8.5%) наблюдаются в варианте опыта при предпосевной обработке семян НЧ цинка. Площадь листьев при предпосевной обработке семян НЧ железа и НЧ цинка увеличивается на 18.2 и 33% соответственно. Наибольший показатель удельной площади листьев (на 28% выше контроля), рассчитанный как соотношение площади листа к сухой массе, установлен для листьев пшеницы при обработке семян НЧ цинка. Предпосевная обработка семян НЧ Fe и НЧ Zn индивидуально или в композиции приводит к изменению анатомических параметров (толщина листа, мезофилла, эпидермиса, площади проводящего пучка), превышая значения контрольной группы растений, семена которой обработаны водой, и снижая эти показатели по сравнению с листьями, семена которых обработаны полимерами. Оценка структуры урожая пшеницы и качества зерна при предпосевной обработке семян композицией НЧ металлов свидетельствует об увеличении массы тысячи зерен (на 1.9 г выше контроля) при большей озерненности колоса. Предпосевная обработка семян яровой пшеницы НЧ Fe : НЧ Zn способствовала увеличению подвижных форм железа, цинка, меди, фосфора в почве после уборки урожая.  

Список литературы

1. Качутова А.А. Эффективное производство зерна – основа производственной безопасности страны // Вестник НГИЭИ. 2013. № 3(22). С. 76.

2. Poonam Jasrotia, Prem Lal Kashyap, Ajay Kumar Bhardwaj et al. Scope and applications of nanotechnology for wheat production: A review of recent advances//Wheat and Barley Research.2018. V. 10(1). P. 1. https://doi.org/10.25174/2249-4065/2018/76672

3. Давыдова Н.В., Резепкин А.М., Волков Н.К. Селекционная ценность сортов яровой пшеницы из МОСНИИСХ “Немчиновка” различных групп сортосмены. Инновационные разработки по селекции и технологии возделывания сельскохозяйственных культур. 2018. С. 72.

4. Pankaj Singh Rawat, Rajeew Kumar, Pradeep Ramet et al. Effect of Nanoparticles on Wheat Seed Germination and Seedling Growth // World Academy of Science, Engineering and Technology International Journal of Agricultural and Biosystems Engineering. 2018. V. 12. № 1. P. 13.

5. Ma C., White J.C., Zhao J. et al. Uptake of Engineered Nanoparticles by Food Crops: Characterization, Mechanisms, and Implications //Annu Rev Food Sci Technol. 2018. V. 9. P. 129. Epub 2018 Jan 12. https://doi.org/10.1146/annurev-food-030117-012657

6. Sekhon B. Nanotechnology in agri-food production // Nanotechnology, Science and Applications 2014. V. 7. P. 31. https://doi.org/10.2147/NSA.S39406

7. Nair R., Varghese S.H., Nair B.G. et al. Nanoparticulate material delivery to plants// Plant Science. 2010. V. 179 (3). P. 154.

8. Rico C.M., Majumdar S., Duarte-Gardea M. et al. Interaction of nanoparticles with edible plants and their possible implications in the food chain // J. Agric. Food. Chem. 2011. V. 59 (8). P. 3485.

9. Agrawal S., Rathore P. Nanotechnology pros and cons to agriculture: A review // Int. J. Curr. Microbiol. App. Sci. 2014. V. 3 (3). P. 43.

10. Linglan M., Chao L., Chunxiang Q. Rubisco activates mRNA expression in spinach: modulation by nanoanatase treatment // Biol. Trace. Elem. Res. 2008. V. 122 (2). P. 168.

11. Liu X.M., Zhang F.D., Feng Z.B. et al. Effects of nano-ferric oxide on the growth and nutrients absorption of peanut // Journal of Plant Nutrition and Fertilizer Science. 2010. V. 11 (4). P. 551.

12. Giraldo J.P., Landry M.P., Faltermeier S.M. et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing // Nat. Mater. 2014. V. 13 (4). P. 400.

13. Ольховская И.П., Богословская О.А., Яблоков А.Г., Глущенко Н.Н. Показатели урожайности ярового ячменя после предпосевной обработки семян наночастицами металлов // Российские нанотехнологии. 2019. Т. 14. № 1–2. C. 60. https://doi.org/10.21517/1992-7223-2019-1-2-55-62

14. Mehmood A. Brief overview of the application of silver nanoparticles to improve growth of crop plants // IET Nanobiotechnol. 2018. V. 12(6). P. 701. https://doi.org/10.1049/iet-nbt.2017.0273

15. Nechitailo G.S, Bogoslovskaya O.A., Ol’khovskaya I.P. et al. Influence of iron, zinc, and copper nanoparticles on some growth indices of pepper plant // Nanotechnologies in Russia. 2018. V. 13. № 3–4. Р. 161. https://doi.org/10.1134/S1995078018020052

16. Wang P., Lombi E., Zhao F.J. et al. Nanotechnology: A New Opportunity in Plant Sciences // Trends Plant Sci. 2016. V. 21 (8). P. 699. https://doi.org/10.1016/j.tplants.2016.04.005

17. Yasmeen F., Raja N., Razzaq A. et al. Proteomic and physiological analyses of wheat seeds exposed to copper and iron nanoparticles // Biochim Biophys Acta Proteins Proteom. 2017. V. 1865 (1). P. 28. Epub 2016 Oct 4.14. https://doi.org/10.1016/j.bbapap.2016.10.001

18. Glushchenko N.N., Bogoslovskaya O.A., Olkhovskaya I.P. Physico-chemical regularity of the ultradisperse metal powders biological action // Chemical Physics. 2002. V. 21. № 4. P. 79.

19. Rakhmetova A.A., Alekseeva T.P., Bogoslovskaya O.A. et al. Wound-Healing Properties of Copper Nanoparticles as a Function of Physicochemical Parameter // Nanotechnologies in Russia. 2010. V. 5. № 3–4. P. 271.

20. Bogoslovskaja O.A., Rakhmetova A.A., Ovsyannikova M.N. et al. Antibacterial effect of copper nanoparticles with differing dispersion and phase composition // Nanotechnologies in Russia. 2014. V. 9. № 1–2. Р. 82.

21. Rakhmetova A.A., Bogoslovskaja O.A., Olkhovskaya I.P. et al. Concomitant Action of Organic and Inorganic Nanoparticles in Wound Healing and Antibacterial Resistance: Chitosan and Copper Nanoparticles in an Ointment as an Example // Nanotechnologies in Russia. 2015. V. 10. № 1–2. Р. 149.

22. Чжао Хуэй, Лю Минь, Чень Ю и др. Способ выращивания растений с использованием наночастиц металлов и питательная среда для его осуществления // Патент РФ № 2015154325 от 17.12.2015.

23. Ген М.Я., Миллер А.В. Авторское свидетельство СССР № 814432. Бюллетень изобретений. 1981. № 11. 25 с. Gen M.Ya., Miller A.V. Author’s certificate of the USSR № 814432 // Bulletinofinventions. 1981. No. 11. 25 p.

24. Leipunsky, I.O., Zhigach A.N., Kuskov M.L. et al. Synthesis of TiH2 nanopowder via the Guen-Miller Flow-Levitation method and characterization // J. Alloys and Compounds. 2019. V. 778. P. 271. https://doi.org/10.1016/j.jallcom.2018.11.088

25. Sack L., Cowan P. D., Jaikumar N. et al. The ‘hydrology’ of leaves: coordination of structure and function in temperate woody species // Plant, Cell & Environment. 2003. V. 26. P. 1343.

26. Vendramini F., Diaz S., Gurvich D.E. et al. Leaf traits as indicators of resource-use strategy in floras with succulent species // New Phytologist. 2002. V . 154. № 1. Р. 147.

27. Зейрук В.Н., Васильева С.В., Деревягина М.К. и др. Влияние предпосевной обработки клубней наночастицами металлов в составе полимерного покрытия на заболеваемость и урожайность картофеля // Российские нанотехнологии. 2019. Т. 14. № 5–6. С. 70. https://doi.org/10.21517/1992-7223-2019-5-6-70-78

28. Коваленко Л.В., Фолманис Г.Э. Биологически активные нанопорошки железа. Монография. М.: Ин-т металлургии и материаловедения им. А. А. Байкова РАН, 2006. 124 с.

29. Gorim L., Asch F. Seed Coating Increases Seed Moisture Uptake and Restricts Embryonic Oxygen Availability in Germinating Cereal Seeds // Biology (Basel). 2017. V. 6(2). P. 31. https://doi.org/10.3390/biology6020031

30. Степанов С.А., Ильин Н.С., Гагаринский Е.Л. и др. Физиологические особенности морфогенеза проростков яровой мягкой пшеницы // Известия Саратовского университета. Новая серия. Серия Химия. Биология. Экология, 2014. Т. 14. Вып. 3. С. 37.

31. Wang D., Fahad S., Saud S. et al. Morphological acclimation to agronomic manipulation in leaf dispersion and orientation to promote “Ideotype” breeding: Evidence from 3D visual modeling of “super” rice (Oryza sativa L.) // Plant Physiol. Biochem. 2019. P. 499. Epub 2018 Nov 12. https://doi.org/10.1016/j.plaphy.2018.11.010

32. Duan J., Wu Y., Zhou Y. et al. Approach to Higher Wheat Yield in the Huang-Huai Plain: Improving Post-anthesis Productivity to Increase Harvest Index. // Front Plant Sci. 2018. V. 9. P. 1457. https://doi.org/10.3389/fpls.2018.01457. eCollection 2018

33. Ma X., Dai X.L., Wang X.J. et al. Stability of a winter wheat population with high yield and high resource use efficiency // Ying Yong Sheng Tai Xue Bao. 2017. V. 28 (12). P. 3926. https://doi.org/10.13287/j.1001-9332.201712.025

34. Osnas J.L., Lichstein J.W., Reich P.B. et al. Global leaf trait relationships: mass, area, and the leaf economics spectrum // Science. 2013. V. 340. P. 741.

35. Osunkoya O.O., Bayliss D., Panetta F.D. et al. Leaf trait co-ordination in relation to construction cost, carbon gain and resource-use efficiency in exotic invasive and native woody vine species // Annals of Botany. 2010. V. 106. P. 371.

36. Geng Y., Wang L., Jin D. et al. Alpine climate alters the relationships between leaf and root morphological traits but not chemical traits // Oecologia. 2014. V. 175. P. 445.

37. Achari G.A., Kowshik M. Recent Developments on Nanotechnology in Agriculture: Plant Mineral Nutrition, Health, and Interactions with Soil Microflora // J. Agric. Food. Chem. 2018. V. 66 (33). P. 8647. https://doi.org/10.1021/acs.jafc.8b00691

38. Simonin M., Richaume A. Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbialcommunities: a review // Environ. Sci Pollut. Res. Int. 2015. V. 22(18). P. 13710. https://doi.org/10.1007/s11356-015-4171-x

39. Dimkpa C.O. Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? // J. Basic. Microbiol. 2014. V. 54 (9). P. 889. https://doi.org/10.1002/jobm.201400298

Title in english. 2019; 14: 64-74

SPRING WHEAT FEATURES IN RESPONSE TO SEED TREATMENT WITH METAL NANOPARTICLES

Davydova N. V., Zamana S. P., Krokhmal I. I., Ryezepkin A. M., Romanova E. S., Olkhovskaya I. P., Bogoslovskaya O. A., Yablokov A. G., Glushchenko N. N.

https://doi.org/10.21517/1992-7223-2019-11-12-64-74

Abstract

The use of advanced nanotechnology is one of the main ways to increase crop yields to meet the growing global demand for food. This study is devoted to the study of Fe and Zn nanoparticles (NPs) influence on seed germination, growth of spring wheat seedlings (Triticum aestivum L.) Zlata variety, leaf anatomical changes, yield, grain quality and microelement composition of the soil after harvest. It was found that pre-sowing treatment of seeds with a NPs composition of NPs Fe at a concentration of 10-5%, NPs Zn at a concentration of 10-4% contributes to a 27% increase in the energy seed germination index and root weight compared with the control. The highest plant height (by 8.2%) and green mass (by 8.5%) is observed in the experiment variant during seeds pre-sowing treatment of NPs Zn. The leaf area during pre-sowing treatment of NPs iron and NPs zinc seeds increases by 18.2% and 33%, respectively. The highest index of specific leaf area (28% higher than the control), calculated as the ratio of leaf area to green mass, is set for wheat leaves when processing seeds with NPs Zn.  Pre-sowing treatment of NPs Fe and NPs Zn seeds individually or in a composition leads to changes in anatomical parameters (thickness of the leaf, mesophyll, epidermis, conducting beam), exceeding the values of the control group of plants whose seeds are treated with water and reducing these indicators in comparison with leaves whose seeds are treated with polymers. Evaluation of the structure of the wheat crop and grain quality during pre-sowing treatment of seeds with a composition of NPs metals indicates an increase in the mass of a thousand grains (1.9 gabove control) with a greater lake level of the ear. Pre-sowing treatment of spring wheat seeds NPs Fe: NPs Zn contributed to an increase in mobile forms of iron, zinc, copper, phosphorus in the soil after harvest.

References

1. Kachutova A.A. Effektivnoe proizvodstvo zerna – osnova proizvodstvennoi bezopasnosti strany // Vestnik NGIEI. 2013. № 3(22). S. 76.

2. Poonam Jasrotia, Prem Lal Kashyap, Ajay Kumar Bhardwaj et al. Scope and applications of nanotechnology for wheat production: A review of recent advances//Wheat and Barley Research.2018. V. 10(1). P. 1. https://doi.org/10.25174/2249-4065/2018/76672

3. Davydova N.V., Rezepkin A.M., Volkov N.K. Selektsionnaya tsennost' sortov yarovoi pshenitsy iz MOSNIISKh “Nemchinovka” razlichnykh grupp sortosmeny. Innovatsionnye razrabotki po selektsii i tekhnologii vozdelyvaniya sel'skokhozyaistvennykh kul'tur. 2018. S. 72.

4. Pankaj Singh Rawat, Rajeew Kumar, Pradeep Ramet et al. Effect of Nanoparticles on Wheat Seed Germination and Seedling Growth // World Academy of Science, Engineering and Technology International Journal of Agricultural and Biosystems Engineering. 2018. V. 12. № 1. P. 13.

5. Ma C., White J.C., Zhao J. et al. Uptake of Engineered Nanoparticles by Food Crops: Characterization, Mechanisms, and Implications //Annu Rev Food Sci Technol. 2018. V. 9. P. 129. Epub 2018 Jan 12. https://doi.org/10.1146/annurev-food-030117-012657

6. Sekhon B. Nanotechnology in agri-food production // Nanotechnology, Science and Applications 2014. V. 7. P. 31. https://doi.org/10.2147/NSA.S39406

7. Nair R., Varghese S.H., Nair B.G. et al. Nanoparticulate material delivery to plants// Plant Science. 2010. V. 179 (3). P. 154.

8. Rico C.M., Majumdar S., Duarte-Gardea M. et al. Interaction of nanoparticles with edible plants and their possible implications in the food chain // J. Agric. Food. Chem. 2011. V. 59 (8). P. 3485.

9. Agrawal S., Rathore P. Nanotechnology pros and cons to agriculture: A review // Int. J. Curr. Microbiol. App. Sci. 2014. V. 3 (3). P. 43.

10. Linglan M., Chao L., Chunxiang Q. Rubisco activates mRNA expression in spinach: modulation by nanoanatase treatment // Biol. Trace. Elem. Res. 2008. V. 122 (2). P. 168.

11. Liu X.M., Zhang F.D., Feng Z.B. et al. Effects of nano-ferric oxide on the growth and nutrients absorption of peanut // Journal of Plant Nutrition and Fertilizer Science. 2010. V. 11 (4). P. 551.

12. Giraldo J.P., Landry M.P., Faltermeier S.M. et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing // Nat. Mater. 2014. V. 13 (4). P. 400.

13. Ol'khovskaya I.P., Bogoslovskaya O.A., Yablokov A.G., Glushchenko N.N. Pokazateli urozhainosti yarovogo yachmenya posle predposevnoi obrabotki semyan nanochastitsami metallov // Rossiiskie nanotekhnologii. 2019. T. 14. № 1–2. C. 60. https://doi.org/10.21517/1992-7223-2019-1-2-55-62

14. Mehmood A. Brief overview of the application of silver nanoparticles to improve growth of crop plants // IET Nanobiotechnol. 2018. V. 12(6). P. 701. https://doi.org/10.1049/iet-nbt.2017.0273

15. Nechitailo G.S, Bogoslovskaya O.A., Ol’khovskaya I.P. et al. Influence of iron, zinc, and copper nanoparticles on some growth indices of pepper plant // Nanotechnologies in Russia. 2018. V. 13. № 3–4. R. 161. https://doi.org/10.1134/S1995078018020052

16. Wang P., Lombi E., Zhao F.J. et al. Nanotechnology: A New Opportunity in Plant Sciences // Trends Plant Sci. 2016. V. 21 (8). P. 699. https://doi.org/10.1016/j.tplants.2016.04.005

17. Yasmeen F., Raja N., Razzaq A. et al. Proteomic and physiological analyses of wheat seeds exposed to copper and iron nanoparticles // Biochim Biophys Acta Proteins Proteom. 2017. V. 1865 (1). P. 28. Epub 2016 Oct 4.14. https://doi.org/10.1016/j.bbapap.2016.10.001

18. Glushchenko N.N., Bogoslovskaya O.A., Olkhovskaya I.P. Physico-chemical regularity of the ultradisperse metal powders biological action // Chemical Physics. 2002. V. 21. № 4. P. 79.

19. Rakhmetova A.A., Alekseeva T.P., Bogoslovskaya O.A. et al. Wound-Healing Properties of Copper Nanoparticles as a Function of Physicochemical Parameter // Nanotechnologies in Russia. 2010. V. 5. № 3–4. P. 271.

20. Bogoslovskaja O.A., Rakhmetova A.A., Ovsyannikova M.N. et al. Antibacterial effect of copper nanoparticles with differing dispersion and phase composition // Nanotechnologies in Russia. 2014. V. 9. № 1–2. R. 82.

21. Rakhmetova A.A., Bogoslovskaja O.A., Olkhovskaya I.P. et al. Concomitant Action of Organic and Inorganic Nanoparticles in Wound Healing and Antibacterial Resistance: Chitosan and Copper Nanoparticles in an Ointment as an Example // Nanotechnologies in Russia. 2015. V. 10. № 1–2. R. 149.

22. Chzhao Khuei, Lyu Min', Chen' Yu i dr. Sposob vyrashchivaniya rastenii s ispol'zovaniem nanochastits metallov i pitatel'naya sreda dlya ego osushchestvleniya // Patent RF № 2015154325 ot 17.12.2015.

23. Gen M.Ya., Miller A.V. Avtorskoe svidetel'stvo SSSR № 814432. Byulleten' izobretenii. 1981. № 11. 25 s. Gen M.Ya., Miller A.V. Author’s certificate of the USSR № 814432 // Bulletinofinventions. 1981. No. 11. 25 p.

24. Leipunsky, I.O., Zhigach A.N., Kuskov M.L. et al. Synthesis of TiH2 nanopowder via the Guen-Miller Flow-Levitation method and characterization // J. Alloys and Compounds. 2019. V. 778. P. 271. https://doi.org/10.1016/j.jallcom.2018.11.088

25. Sack L., Cowan P. D., Jaikumar N. et al. The ‘hydrology’ of leaves: coordination of structure and function in temperate woody species // Plant, Cell & Environment. 2003. V. 26. P. 1343.

26. Vendramini F., Diaz S., Gurvich D.E. et al. Leaf traits as indicators of resource-use strategy in floras with succulent species // New Phytologist. 2002. V . 154. № 1. R. 147.

27. Zeiruk V.N., Vasil'eva S.V., Derevyagina M.K. i dr. Vliyanie predposevnoi obrabotki klubnei nanochastitsami metallov v sostave polimernogo pokrytiya na zabolevaemost' i urozhainost' kartofelya // Rossiiskie nanotekhnologii. 2019. T. 14. № 5–6. S. 70. https://doi.org/10.21517/1992-7223-2019-5-6-70-78

28. Kovalenko L.V., Folmanis G.E. Biologicheski aktivnye nanoporoshki zheleza. Monografiya. M.: In-t metallurgii i materialovedeniya im. A. A. Baikova RAN, 2006. 124 s.

29. Gorim L., Asch F. Seed Coating Increases Seed Moisture Uptake and Restricts Embryonic Oxygen Availability in Germinating Cereal Seeds // Biology (Basel). 2017. V. 6(2). P. 31. https://doi.org/10.3390/biology6020031

30. Stepanov S.A., Il'in N.S., Gagarinskii E.L. i dr. Fiziologicheskie osobennosti morfogeneza prorostkov yarovoi myagkoi pshenitsy // Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Khimiya. Biologiya. Ekologiya, 2014. T. 14. Vyp. 3. S. 37.

31. Wang D., Fahad S., Saud S. et al. Morphological acclimation to agronomic manipulation in leaf dispersion and orientation to promote “Ideotype” breeding: Evidence from 3D visual modeling of “super” rice (Oryza sativa L.) // Plant Physiol. Biochem. 2019. P. 499. Epub 2018 Nov 12. https://doi.org/10.1016/j.plaphy.2018.11.010

32. Duan J., Wu Y., Zhou Y. et al. Approach to Higher Wheat Yield in the Huang-Huai Plain: Improving Post-anthesis Productivity to Increase Harvest Index. // Front Plant Sci. 2018. V. 9. P. 1457. https://doi.org/10.3389/fpls.2018.01457. eCollection 2018

33. Ma X., Dai X.L., Wang X.J. et al. Stability of a winter wheat population with high yield and high resource use efficiency // Ying Yong Sheng Tai Xue Bao. 2017. V. 28 (12). P. 3926. https://doi.org/10.13287/j.1001-9332.201712.025

34. Osnas J.L., Lichstein J.W., Reich P.B. et al. Global leaf trait relationships: mass, area, and the leaf economics spectrum // Science. 2013. V. 340. P. 741.

35. Osunkoya O.O., Bayliss D., Panetta F.D. et al. Leaf trait co-ordination in relation to construction cost, carbon gain and resource-use efficiency in exotic invasive and native woody vine species // Annals of Botany. 2010. V. 106. P. 371.

36. Geng Y., Wang L., Jin D. et al. Alpine climate alters the relationships between leaf and root morphological traits but not chemical traits // Oecologia. 2014. V. 175. P. 445.

37. Achari G.A., Kowshik M. Recent Developments on Nanotechnology in Agriculture: Plant Mineral Nutrition, Health, and Interactions with Soil Microflora // J. Agric. Food. Chem. 2018. V. 66 (33). P. 8647. https://doi.org/10.1021/acs.jafc.8b00691

38. Simonin M., Richaume A. Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbialcommunities: a review // Environ. Sci Pollut. Res. Int. 2015. V. 22(18). P. 13710. https://doi.org/10.1007/s11356-015-4171-x

39. Dimkpa C.O. Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? // J. Basic. Microbiol. 2014. V. 54 (9). P. 889. https://doi.org/10.1002/jobm.201400298