Журналов:     Статей:        

Российские нанотехнологии. 2017; 12: 23-29

Превращения этанола на катализаторах на основе нанопористого алюмината кальция — майенита (Ca12Al14O33) и майенита, легированного медью

Миронова Е. Ю., Ермилова М. М., Орехова Н. В., Толкачева А. С., Шкерин С. Н., Ярославцев А. Б.

Аннотация

Изучены каталитические свойства нелегированного и легированных медью образцов со структурой майенита. В реакциях конверсии этилового спирта и парового риформинга этанола  исследованы исходный майенит и образцы, содержащие 0.58 и 0.92 масс. % меди. Все  катализаторы оказались активными в обоих процессах. Изучено влияние мольного  соотношения этанол/вода на распределение продуктов. В ходе проведения экспериментов был  обнаружен факт обратимой сорбции водорода при термообработке катализаторов, содержащих медь.

Список литературы

1. Lu G.Q., Zhao X.S. Nanoporous materials: An overview. In: Nanoporous Materials: Science and Engineering. Series on Chemical Engineering. V. 4. UK: Imperial College Press. 2004. P. 1–12.

2. Yang S., Kondo J.N., Hayashi K., Hirano M., Domen K., Hosono H. Formation and Desorption of Oxygen Species in Nanoporous Crystal 12CaO×7Al2O3 // Chem. Mater. 2004. V. 16. P. 104–110.

3. Tsvetkov D.S., Steparuk A.S., Zuev A.Yu. Defect structure and related properties of mayenite Ca12Al14O33. // Solid State Ionics. 2015. V. 276. P. 142–148.

4. Толкачева А.С., Шкерин С.Н., Корзун И.В., Титова С.Г., Федорова О.М., Ординарцев Д.П. Высокотемпературная граница существования структуры майенита // Фазовые переходы, упорядоченные состояния и новые материалы (электронный журнал). 2011. № 5. С. 1–8.

5. Толкачева А.С., Шкерин С.Н., Корзун И.В., Плаксин С.В., Хрустов В.Р., Ординарцев Д.П. Фазовые переходы в майените Ca12Al14O33 // Журн. неорган. химии. 2012. Т. 57. № 7. С. 1089–1093.

6. Teusner M., De Souza R.A., Krause H., Ebbinghaus S.G., Martin M. Oxygen transport in undoped and doped mayenite // Solid State Ionics. 2016. V. 284. P. 25–27.

7. Lacerda M., Irvine J.T.S., Glasser F.P., West A.R. High oxide ion conductivity in Са12Аl14O33 // Nature. 1988. V. 332. № 7. P. 525–526.

8. Li C., Hirabayashi D., Suzuki K. A crucial role of O2ˉ and O2 2ˉ on mayenite structure for biomass tar steam reforming over Ni/Ca12Al14O33 // Appl. Catal. B: Environmental. 2009. V. 88. P. 351–360.

9. Sato K., Fujita S., Suzuki K., Mori T. High performance of Nisubstituted calcium aluminosilicate for partial oxidation of methane into syngas // Catal. Comm. 2007. V. 8. P. 1735–1738.

10. Dang C., Yu H., Wang H., Peng F., Yang Y. A bi-functional Co–CaO–Ca12Al14O33 catalyst for sorption-enhanced steam reforming of glycerol to high-purity hydrogen // Chem. Eng. J. 2016. V. 286. P. 329–338.

11. Zamboni I., Courson C., Niznansky D., Kiennemann A. Simultaneous catalytic H2 production and CO2 capture in steam reforming of toluene as tar model compound from biomass gasification // App. Catal. B: Environmental. 2014. V. 145. P. 63–72.

12. Cesário M.R., Barros B.S., Courson C., Melo D.M.A., Kiennemann A. Catalytic performances of Ni–CaO–mayenite in CO2 sorption enhanced steam methane reforming // Fuel Proc. Technol. 2015. V. 131. P. 247–253.

13. Di Carlo A., Borello D., Sisinni M., Savuto E., Venturini P., Bocci E., Kuramoto K. Reforming of tar contained in a raw fuel gas from biomass gasification using nickel-mayenite catalyst // Int. J. Hydrogen Energy.2015. V. 40. P. 9088–9095.

14. Li C., Hirabayashi D., Suzuki K. Development of new nickel based catalyst for biomass tar steam reforming producing H2-rich syngas // Fuel Processing Technology. 2009. V. 90. P. 790–796.

15. Proto A., Cucciniello R., Genga A, Capacchione C. A study on the catalytic hydrogenation of aldehydes using mayenite as active support for palladium // Catalysis Communications. 2015. V. 68. P. 41–45.

16. Tolkacheva A.S., Shkerin S.N., Kalinina E.G., Filatov I.E. and Safronov A.P. Сeramics with Mayenite Structure: Molecular Sieve for Helium Gas // Russian Journal of Applied Chemistry. 2014. V. 87. № 4. P. 536−538.

17. Suzuki K. Application to catalyst of mayenite consisting of ubiquitous elements // Transactions of JWRI. 2010. V. 39. № 2. P. 281–283.

18. Rossetti I., Compagnoni M., Torli M. Process simulation and optimization of H2 production from ethanol steam reforming and its use in fuel cells. 2. Process analysis and optimization // Chemical Engineering Journal. 2015. V. 281. P. 1036–1044.

19. Hedayati A., Le Corre O., Lacarrière B., Llorca J. Dynamic simulation of pure hydrogen production via ethanol steam reforming in a catalytic membrane reactor // Energy. 2016. V. 117. P. 316–324.

20. Hedayati A., Le Corre O., Lacarrière B., Llorca J. Experimental and exergy evaluation of ethanol catalytic steam reforming in a membrane reactor // Catalysis Today. 2016. V. 268. P. 68–78.

21. Стенина И.А., Сафронова Е.Ю., Левченко А.В., Добровольский Ю.А., Ярославцев А.Б. Низкотемпературные топливные элементы: перспективы применения для систем аккумулирования энергии и материалы для их разработки // Теплоэнергетика. 2016. № 6. C. 4–18.

22. Mironova E.Yu, Ermilova M.M., Orekhova N.V., Muraviev D.N., Yaroslavtsev A.B. Production of high purity hydrogen by ethanol steam reforming in membrane reactor // Catalysis Today. 2014. V. 236. P. 64–69.

23. Palma V., Castaldo F., Ciambelli P., Iaquaniello G., Capitani G. On the activity of bimetallic catalysts for ethanol steam reforming // International journal of hydrogen energy. 2013. V. 38. P. 6633–6645.

24. Osorio-Vargas P., Flores-González N.A., Navarro R.M., Fierro J.L.G., Campos C.H., Reyes P. Improved stability of Ni/Al2O3 catalysts by effect of promoters (La2O3, CeO2) for ethanol steamreforming reaction // Catalysis Today. 2015. V. 259. P. 27–38.

25. González-Gil R., Herrera C., Larrubia M.A., Mariño F., Laborde M., Alemany L.J. Hydrogen production by ethanol steam reforming over multimetallic RhCeNi/Al2O3 structured catalyst. Pilot-scale study // International Journal of Hydrogen Energy. 2016. V. 41. P. 16786–16796.

26. Pourcelly G. Membranes for low and medium temperature fuel cells. State-of-the-art and new trends // Petroleum Chem. 2011. V. 51. № 7. P. 480–491.

27. Басов Н.Л., Ермилова М.М., Орехова Н.В., Ярославцев А.Б. Мембранный катализ в процессах дегидрирования и производства водорода // Успехи химии. 2013. Т. 82. № 4. C. 352–368.

28. Kyriakides A.-S., Rodrıguez-Garcıa L., Voutetakis S., Ipsakis D., Seferlis P., Papadopoulou S. Enhancement of pure hydrogen production through the use of a membrane reactor // International Journal of Hydrogen Energy. 2014. V. 39. № 9. P. 4749–4760.

29. Lopez P., Mondragon-Galicia G., Espinosa-Pesqueira M.E., Mendoza-Anaya D., Fernandez M.E., Gomez-Cortes A., Bonifacio J., Martınez-Barrera G., Perez-Hernandez R. Hydrogen production from oxidative steam reforming of methanol: Effect of the Cu and Ni impregnation on ZrO2 and their molecular simulation studies // International Journal of Hydrogen Energy. 2012. V. 37. P. 9018–9027.

30. Marra L., Wolbers P.F., Gallucci F., van Sint Annaland M. Development of a RhZrO2 catalyst for low temperature autothermal reforming of methane in membrane reactors // Catalysis Today. 2014. V. 236. P. 23–33.

31. Ni Y., Sun Z. Recent progress on industrial fermentative production of acetone-butanol- ethanol by Clostridium acetobutylicum in China // Appl. Microbiol. Biotechnol. 2009. V. 83. P. 415–423.

32. Costa Sousa L., Chundawat S.P., Balan V., Dale B.E. “Cradle-tograve” assessment of existing lignocellulose pretreatment technologies // Current Opinion Biotechnology. 2009. V. 20. № 3. P. 339–347.

33. Green E. Fermentative production of butanol — the industrial perspective // Curr. Opin. Biotech. 2011. V. 22. P. 337–343.

34. Wang L., Chen H.Z. Increased fermentability of enzymatically hydrolyzed steam- exploded corn stover for butanol production by removal of fermentation inhibitors // Process Biochemistry. 2011. V. 46. P. 604–607.

35. Merzhanov A.G. Theory and practice of SHS: worldwide state of the art and the newest results // Int. J. of SHS. 1993. V. 2. № 2. P. 113–158.

36. Tolkacheva A.S., Shkerin S.N., Plaksin S.V., Vovkotrub E.G., Bulanin K.M., Kochedykov V.A., Ordinartsev D.P., Gyrdasova O.I., and Molchanova N.G. Synthesis of Dense Ceramics of Single-Phase Mayenite (Ca12Al14O32)O // Russian Journal of Applied Chemistry. 2011. V. 84. № 6. P. 907–911.

37. Bussem W., Eitel A. The structure of pentacalcium trialuminate // Z. Krist. 1936. V. 95. P. 175.

38. Huang J., Valenzano L., and Sant G. Framework and channel modifications in mayenite (12CaO*7Al2O3) nanocages by cationic doping // Chem. Mater. 2015. V. 27. P. 4731–4741.

Title in english. 2017; 12: 23-29

Превращения этанола на катализаторах на основе нанопористого алюмината кальция — майенита (Ca12Al14O33) и майенита, легированного медью

, , , , ,

Abstract

Изучены каталитические свойства нелегированного и легированных медью образцов со структурой майенита. В реакциях конверсии этилового спирта и парового риформинга этанола  исследованы исходный майенит и образцы, содержащие 0.58 и 0.92 масс. % меди. Все  катализаторы оказались активными в обоих процессах. Изучено влияние мольного  соотношения этанол/вода на распределение продуктов. В ходе проведения экспериментов был  обнаружен факт обратимой сорбции водорода при термообработке катализаторов, содержащих медь.

References

1. Lu G.Q., Zhao X.S. Nanoporous materials: An overview. In: Nanoporous Materials: Science and Engineering. Series on Chemical Engineering. V. 4. UK: Imperial College Press. 2004. P. 1–12.

2. Yang S., Kondo J.N., Hayashi K., Hirano M., Domen K., Hosono H. Formation and Desorption of Oxygen Species in Nanoporous Crystal 12CaO×7Al2O3 // Chem. Mater. 2004. V. 16. P. 104–110.

3. Tsvetkov D.S., Steparuk A.S., Zuev A.Yu. Defect structure and related properties of mayenite Ca12Al14O33. // Solid State Ionics. 2015. V. 276. P. 142–148.

4. Tolkacheva A.S., Shkerin S.N., Korzun I.V., Titova S.G., Fedorova O.M., Ordinartsev D.P. Vysokotemperaturnaya granitsa sushchestvovaniya struktury maienita // Fazovye perekhody, uporyadochennye sostoyaniya i novye materialy (elektronnyi zhurnal). 2011. № 5. S. 1–8.

5. Tolkacheva A.S., Shkerin S.N., Korzun I.V., Plaksin S.V., Khrustov V.R., Ordinartsev D.P. Fazovye perekhody v maienite Ca12Al14O33 // Zhurn. neorgan. khimii. 2012. T. 57. № 7. S. 1089–1093.

6. Teusner M., De Souza R.A., Krause H., Ebbinghaus S.G., Martin M. Oxygen transport in undoped and doped mayenite // Solid State Ionics. 2016. V. 284. P. 25–27.

7. Lacerda M., Irvine J.T.S., Glasser F.P., West A.R. High oxide ion conductivity in Sa12Al14O33 // Nature. 1988. V. 332. № 7. P. 525–526.

8. Li C., Hirabayashi D., Suzuki K. A crucial role of O2ˉ and O2 2ˉ on mayenite structure for biomass tar steam reforming over Ni/Ca12Al14O33 // Appl. Catal. B: Environmental. 2009. V. 88. P. 351–360.

9. Sato K., Fujita S., Suzuki K., Mori T. High performance of Nisubstituted calcium aluminosilicate for partial oxidation of methane into syngas // Catal. Comm. 2007. V. 8. P. 1735–1738.

10. Dang C., Yu H., Wang H., Peng F., Yang Y. A bi-functional Co–CaO–Ca12Al14O33 catalyst for sorption-enhanced steam reforming of glycerol to high-purity hydrogen // Chem. Eng. J. 2016. V. 286. P. 329–338.

11. Zamboni I., Courson C., Niznansky D., Kiennemann A. Simultaneous catalytic H2 production and CO2 capture in steam reforming of toluene as tar model compound from biomass gasification // App. Catal. B: Environmental. 2014. V. 145. P. 63–72.

12. Cesário M.R., Barros B.S., Courson C., Melo D.M.A., Kiennemann A. Catalytic performances of Ni–CaO–mayenite in CO2 sorption enhanced steam methane reforming // Fuel Proc. Technol. 2015. V. 131. P. 247–253.

13. Di Carlo A., Borello D., Sisinni M., Savuto E., Venturini P., Bocci E., Kuramoto K. Reforming of tar contained in a raw fuel gas from biomass gasification using nickel-mayenite catalyst // Int. J. Hydrogen Energy.2015. V. 40. P. 9088–9095.

14. Li C., Hirabayashi D., Suzuki K. Development of new nickel based catalyst for biomass tar steam reforming producing H2-rich syngas // Fuel Processing Technology. 2009. V. 90. P. 790–796.

15. Proto A., Cucciniello R., Genga A, Capacchione C. A study on the catalytic hydrogenation of aldehydes using mayenite as active support for palladium // Catalysis Communications. 2015. V. 68. P. 41–45.

16. Tolkacheva A.S., Shkerin S.N., Kalinina E.G., Filatov I.E. and Safronov A.P. Seramics with Mayenite Structure: Molecular Sieve for Helium Gas // Russian Journal of Applied Chemistry. 2014. V. 87. № 4. P. 536−538.

17. Suzuki K. Application to catalyst of mayenite consisting of ubiquitous elements // Transactions of JWRI. 2010. V. 39. № 2. P. 281–283.

18. Rossetti I., Compagnoni M., Torli M. Process simulation and optimization of H2 production from ethanol steam reforming and its use in fuel cells. 2. Process analysis and optimization // Chemical Engineering Journal. 2015. V. 281. P. 1036–1044.

19. Hedayati A., Le Corre O., Lacarrière B., Llorca J. Dynamic simulation of pure hydrogen production via ethanol steam reforming in a catalytic membrane reactor // Energy. 2016. V. 117. P. 316–324.

20. Hedayati A., Le Corre O., Lacarrière B., Llorca J. Experimental and exergy evaluation of ethanol catalytic steam reforming in a membrane reactor // Catalysis Today. 2016. V. 268. P. 68–78.

21. Stenina I.A., Safronova E.Yu., Levchenko A.V., Dobrovol'skii Yu.A., Yaroslavtsev A.B. Nizkotemperaturnye toplivnye elementy: perspektivy primeneniya dlya sistem akkumulirovaniya energii i materialy dlya ikh razrabotki // Teploenergetika. 2016. № 6. C. 4–18.

22. Mironova E.Yu, Ermilova M.M., Orekhova N.V., Muraviev D.N., Yaroslavtsev A.B. Production of high purity hydrogen by ethanol steam reforming in membrane reactor // Catalysis Today. 2014. V. 236. P. 64–69.

23. Palma V., Castaldo F., Ciambelli P., Iaquaniello G., Capitani G. On the activity of bimetallic catalysts for ethanol steam reforming // International journal of hydrogen energy. 2013. V. 38. P. 6633–6645.

24. Osorio-Vargas P., Flores-González N.A., Navarro R.M., Fierro J.L.G., Campos C.H., Reyes P. Improved stability of Ni/Al2O3 catalysts by effect of promoters (La2O3, CeO2) for ethanol steamreforming reaction // Catalysis Today. 2015. V. 259. P. 27–38.

25. González-Gil R., Herrera C., Larrubia M.A., Mariño F., Laborde M., Alemany L.J. Hydrogen production by ethanol steam reforming over multimetallic RhCeNi/Al2O3 structured catalyst. Pilot-scale study // International Journal of Hydrogen Energy. 2016. V. 41. P. 16786–16796.

26. Pourcelly G. Membranes for low and medium temperature fuel cells. State-of-the-art and new trends // Petroleum Chem. 2011. V. 51. № 7. P. 480–491.

27. Basov N.L., Ermilova M.M., Orekhova N.V., Yaroslavtsev A.B. Membrannyi kataliz v protsessakh degidrirovaniya i proizvodstva vodoroda // Uspekhi khimii. 2013. T. 82. № 4. C. 352–368.

28. Kyriakides A.-S., Rodrıguez-Garcıa L., Voutetakis S., Ipsakis D., Seferlis P., Papadopoulou S. Enhancement of pure hydrogen production through the use of a membrane reactor // International Journal of Hydrogen Energy. 2014. V. 39. № 9. P. 4749–4760.

29. Lopez P., Mondragon-Galicia G., Espinosa-Pesqueira M.E., Mendoza-Anaya D., Fernandez M.E., Gomez-Cortes A., Bonifacio J., Martınez-Barrera G., Perez-Hernandez R. Hydrogen production from oxidative steam reforming of methanol: Effect of the Cu and Ni impregnation on ZrO2 and their molecular simulation studies // International Journal of Hydrogen Energy. 2012. V. 37. P. 9018–9027.

30. Marra L., Wolbers P.F., Gallucci F., van Sint Annaland M. Development of a RhZrO2 catalyst for low temperature autothermal reforming of methane in membrane reactors // Catalysis Today. 2014. V. 236. P. 23–33.

31. Ni Y., Sun Z. Recent progress on industrial fermentative production of acetone-butanol- ethanol by Clostridium acetobutylicum in China // Appl. Microbiol. Biotechnol. 2009. V. 83. P. 415–423.

32. Costa Sousa L., Chundawat S.P., Balan V., Dale B.E. “Cradle-tograve” assessment of existing lignocellulose pretreatment technologies // Current Opinion Biotechnology. 2009. V. 20. № 3. P. 339–347.

33. Green E. Fermentative production of butanol — the industrial perspective // Curr. Opin. Biotech. 2011. V. 22. P. 337–343.

34. Wang L., Chen H.Z. Increased fermentability of enzymatically hydrolyzed steam- exploded corn stover for butanol production by removal of fermentation inhibitors // Process Biochemistry. 2011. V. 46. P. 604–607.

35. Merzhanov A.G. Theory and practice of SHS: worldwide state of the art and the newest results // Int. J. of SHS. 1993. V. 2. № 2. P. 113–158.

36. Tolkacheva A.S., Shkerin S.N., Plaksin S.V., Vovkotrub E.G., Bulanin K.M., Kochedykov V.A., Ordinartsev D.P., Gyrdasova O.I., and Molchanova N.G. Synthesis of Dense Ceramics of Single-Phase Mayenite (Ca12Al14O32)O // Russian Journal of Applied Chemistry. 2011. V. 84. № 6. P. 907–911.

37. Bussem W., Eitel A. The structure of pentacalcium trialuminate // Z. Krist. 1936. V. 95. P. 175.

38. Huang J., Valenzano L., and Sant G. Framework and channel modifications in mayenite (12CaO*7Al2O3) nanocages by cationic doping // Chem. Mater. 2015. V. 27. P. 4731–4741.